1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
|
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <getopt.h>
#include <pthread.h>
#include <semaphore.h>
#include <errno.h>
#include <string.h>
#include <openssl/bn.h>
#include <openssl/rsa.h>
#include <openssl/sha.h>
#include <openssl/pem.h>
#include <openssl/err.h>
#define EXPONENT_SIZE_BYTES 4
#define EXPONENT_MIN 0x1FFFFFFF
#define EXPONENT_MAX 0xFFFFFFFF
#define RSA_KEY_BITS 1024
const static char base32_lookup[] = "abcdefghijklmnopqrstuvwxyz234567";
static char *search;
static int search_len;
sem_t working;
void
onion_sha(char output[16], unsigned char sum[20]) {
size_t c = 0;
int i = 0;
for (i = 0; i < 10; i+=5) {
output[c++] = base32_lookup[sum[i] >> 3];
output[c++] = base32_lookup[((sum[i] & 0x07) << 2) | (sum[i+1] >> 6)];
output[c++] = base32_lookup[(sum[i+1] >> 1) & 0x1F];
output[c++] = base32_lookup[((sum[i+1] & 1) << 4) | (sum[i+2] >> 4)];
output[c++] = base32_lookup[((sum[i+2] & 0x0F) << 1) | ((sum[i+3] & 0x80) >> 7)];
output[c++] = base32_lookup[(sum[i+3] >> 2) & 0x1F];
output[c++] = base32_lookup[((sum[i+3] & 0x03) << 3) | (sum[i+4] >> 5)];
output[c++] = base32_lookup[sum[i+4] & 0x1F];
}
}
/* re-calculate the decryption key `d` for the given key
* the product of e and d must be congruent to 1, and since we are messing
* with e to generate our keys, we must re-calculate d */
int
key_update_d(RSA *rsa_key) {
BN_CTX *bn_ctx = NULL;
const BIGNUM *p = NULL;
const BIGNUM *q = NULL;
const BIGNUM *d = NULL;
const BIGNUM *e = NULL;
BIGNUM *gcd = BN_new();
BIGNUM *p1 = BN_new();
BIGNUM *q1 = BN_new();
BIGNUM *p1q1 = BN_new();
BIGNUM *lambda_n = BN_new();
BIGNUM *true_d = BN_new();
BIGNUM *true_dmp1 = BN_new();
BIGNUM *true_dmq1 = BN_new();
BIGNUM *true_iqmp = BN_new();
/* FIXME check for error */
bn_ctx = BN_CTX_new();
/* FIXME check for error */
RSA_get0_key(rsa_key, NULL, &e, &d);
/* FIXME check for error */
RSA_get0_factors(rsa_key, &p, &q);
BN_sub(p1, p, BN_value_one());
BN_sub(q1, q, BN_value_one());
BN_mul(p1q1, p1, q1, bn_ctx);
/* calculate LCM of p1,q1 with p1*q1/gcd(p1,q1) */
BN_gcd(gcd, p1, q1, bn_ctx);
BN_div(lambda_n, NULL, p1q1, gcd, bn_ctx);
BN_mod_inverse(true_d, e, lambda_n, bn_ctx);
BN_mod_inverse(true_iqmp, q, p, bn_ctx);
BN_mod(true_dmp1, true_d, p1, bn_ctx);
BN_mod(true_dmq1, true_d, q1, bn_ctx);
/* FIXME check for errors */
if (!RSA_set0_key(rsa_key, NULL, NULL, true_d)) {
fprintf(stderr, "setting d failed\n");
return 1;
}
if (!RSA_set0_crt_params(rsa_key, true_dmp1, true_dmq1, true_iqmp)) {
fprintf(stderr, "setting crt params failed\n");
return 1;
}
return 0;
}
void*
work(void *arg) {
char onion[17];
unsigned char sha[20];
unsigned long e = EXPONENT_MIN;
unsigned int e_big_endian = 0;
unsigned char *der_data = NULL;
unsigned char *tmp_data = NULL;
size_t der_length = 0;
unsigned long volatile *kilo_hashes = arg;
unsigned long hashes = 0;
BIGNUM *bignum_e = NULL;
RSA *rsa_key = NULL;
SHA_CTX sha_c;
SHA_CTX working_sha_c;
int sem_val = 0;
rsa_key = RSA_new();
if (!rsa_key) {
fprintf(stderr, "Failed to allocate RSA key\n");
goto STOP;
}
bignum_e = BN_new();
if (!bignum_e) {
fprintf(stderr, "Failed to allocate bignum for exponent\n");
goto STOP;
}
while(sem_getvalue(&working, &sem_val) == 0 && sem_val == 0) {
e = EXPONENT_MIN;
BN_set_word(bignum_e, e);
if (!RSA_generate_key_ex(rsa_key, RSA_KEY_BITS, bignum_e, NULL)) {
fprintf(stderr, "Failed to generate RSA key\n");
goto STOP;
}
der_length = i2d_RSAPublicKey(rsa_key, NULL);
if (der_length <= 0) {
fprintf(stderr, "i2d failed\n");
goto STOP;
}
der_data = malloc(der_length);
if (!der_data) {
fprintf(stderr, "DER data malloc failed\n");
goto STOP;
}
tmp_data = der_data;
if (i2d_RSAPublicKey(rsa_key, &tmp_data) != der_length) {
fprintf(stderr, "DER formatting failed\n");
goto STOP;
}
/* core loop adapted from eschalot */
SHA1_Init(&sha_c);
SHA1_Update(&sha_c, der_data, der_length - EXPONENT_SIZE_BYTES);
free(der_data);
while (e < EXPONENT_MAX) {
memcpy(&working_sha_c, &sha_c, 10*sizeof(SHA_LONG)); /* FIXME magic */
working_sha_c.num = sha_c.num;
e_big_endian = htobe32(e);
SHA1_Update(&working_sha_c, &e_big_endian, EXPONENT_SIZE_BYTES);
SHA1_Final((unsigned char*)&sha, &working_sha_c);
onion_sha(onion, sha);
onion[16] = '\0';
if (hashes++ >= 1000) {
hashes = 0;
(*kilo_hashes)++;
/* check if we should still be working too */
sem_getvalue(&working, &sem_val);
if (sem_val > 0)
goto STOP;
}
if(strncmp(onion, search, search_len) == 0) {
printf("Found %s.onion\n", onion);
#if OPENSSL_VERSION_NUMBER >= 0x10100000L
if (BN_set_word(bignum_e, e) != 1) {
fprintf(stderr, "BN_set_word failed\n");
goto STOP;
}
RSA_set0_key(rsa_key, NULL, bignum_e, NULL);
/* allocate what was freed by above function call */
bignum_e = BN_new();
#else
/* much tidier to be honest */
BN_set_word(rsa_key->e, e);
#endif
/* FIXME check for errors */
key_update_d(rsa_key);
if (RSA_check_key(rsa_key) == 1) {
printf("Key valid\n");
EVP_PKEY *evp_key = EVP_PKEY_new();
if (!EVP_PKEY_assign_RSA(evp_key, rsa_key)) {
fprintf(stderr, "EVP_PKEY assignment failed\n");
goto STOP;
}
PEM_write_PrivateKey(stdout, evp_key, NULL, NULL, 0, NULL, NULL);
EVP_PKEY_free(evp_key);
goto STOP;
} else {
fprintf(stderr, "Key invalid:");
ERR_print_errors_fp(stderr);
}
}
/* select next odd exponent */
e += 2;
}
printf("Wrap\n");
}
STOP:
sem_post(&working);
return NULL;
}
void
die_usage(const char *argv0) {
fprintf(stderr,
"usage: %s [-t threads] -s search\n"
"searches for keys for onion addresses beginning with `search`\n",
argv0
);
exit(1);
}
int
main(int argc, char **argv) {
int opt = '\0';
int thread_count = 1;
int i = 0;
pthread_t *workers = NULL;
unsigned long volatile *khash_count = NULL;
unsigned long khashes = 0;
while ((opt = getopt(argc, argv, "t:s:")) != -1) {
switch (opt) {
case 't':
thread_count = atoi(optarg);
break;
case 's':
search = optarg;
break;
}
}
if (thread_count <= 0) {
die_usage(argv[0]);
}
if (search == NULL || strlen(search) <= 0) {
die_usage(argv[0]);
}
search_len = strlen(search);
workers = calloc(thread_count, sizeof(pthread_t));
if (!workers) {
perror("worker thread calloc");
return 1;
}
khash_count = calloc(thread_count, sizeof(unsigned long));
if (!khash_count) {
perror("hash count array calloc");
return 1;
}
sem_init(&working, 0, 0);
for (i = 0; i < thread_count; i++) {
if (pthread_create(&workers[i], NULL, work, (void*)&khash_count[i])) {
perror("pthread_create");
return 1;
}
}
int loops = 0;
/* workers started; wait on one to finish */
while (sem_trywait(&working) && errno == EAGAIN) {
sleep(1);
loops++;
khashes = 0;
/* approximate hashes per second */
for (i = 0; i < thread_count; i++) {
khashes += khash_count[i];
}
printf("Average rate: %.2f kH/s (%.2f kH/s/thread)\n",
(double)khashes / loops,
((double)khashes / loops) / thread_count);
}
for (i = 0; i < thread_count; i++) {
pthread_join(workers[i], NULL);
}
return 0;
}
|