# Layer to Support the Terasic DE10-Nano\* Board ## Overview Instructions to build the image for the Terasic DE10-Nano\* development board and then write that image to a microSD card. This layer provides support for building a demonstration and development image of Linux\* for the [Terasic DE10-Nano](https://www.terasic.com.tw/cgi-bin/page/archive.pl?Language=English&CategoryNo=205&No=1046&PartNo=8) kit's development board. ## Build Instructions Please refer to [README.md](https://github.com/Angstrom-distribution/angstrom-manifest/blob/master/README.md) for any prerequisites. These instructions assume prerequisites have been met. **Note**: See the instructions for configuring proxies. Steps to build the image: 1. Clone the manifest. 2. Add the meta-de10-nano layer. 3. Fetch repositories. 4. Build the image. ### Step 1: Clone the Manifest Clone the manifest to get all required recipes for building the image. ``` mkdir de10-nano-build cd de10-nano-build repo init -u git://github.com/Angstrom-distribution/angstrom-manifest -b angstrom-v2016.12-yocto2.2 ``` ### Step 2: Add the meta-de10-nano Layer The default manifests do not include the meta-de10-layer. Therefore, we add the layer and resolve any issues encountered with errant layers. ``` mkdir .repo/local_manifests ``` Now we create the manifest to add the meta-de10-layer. The following will create .repo/local_manifests/de10-nano.xml. This specifies a specific revision for meta-altera and meta-de10-nano. ``` cat << EOF > .repo/local_manifests/de10-nano.xml EOF ``` The above also disables meta-photography, so we have to edit conf/bblayers.conf to remove the reference to it. ``` sed -i '/meta-photography/d' .repo/manifests/conf/bblayers.conf ``` We also need to add in the new meta-de10-nano layer to the bblayers.conf ``` sed -i '/meta-altera/a \ \ \$\{TOPDIR\}\/layers\/meta-de10-nano \\' .repo/manifests/conf/bblayers.conf ``` ### Step 3: Fetch the Repositories from the Manifest ``` repo sync ``` ### Step 4: Build the Image Estimated to complete: 2–3 hours. ``` MACHINE=de10-nano . ./setup-environment bitbake de10-nano-image ``` ## After Building the Image The result of this lengthy build is an image that can be written to an SD card which will enable the Terasic DE10-Nano board to boot Linux\*. The image provides access via serial port, a graphical interface, USB, and Ethernet. As part of the build, the recipes populate an FPGA image as well as the associated device trees. The build output is located in deploy/glibc/images/de10-nano/ ``` [de10-nano]$ ls Angstrom-de10-nano-image-glibc-ipk-v2016.12-de10-nano.rootfs.cpio de10-nano.rbf u-boot-de10-nano.img Angstrom-de10-nano-image-glibc-ipk-v2016.12-de10-nano.rootfs.ext3 dump_adv7513_edid.bin u-boot-de10-nano.img-de10-nano Angstrom-de10-nano-image-glibc-ipk-v2016.12-de10-nano.rootfs.manifest dump_adv7513_edid.srec u-boot-de10-nano-v2017.03+gitAUTOINC+d03450606b-r0.img Angstrom-de10-nano-image-glibc-ipk-v2016.12-de10-nano.rootfs.socfpga-sdimg dump_adv7513_regs.bin u-boot.img Angstrom-de10-nano-image-glibc-ipk-v2016.12-de10-nano.rootfs.tar.gz dump_adv7513_regs.srec u-boot.img-de10-nano Angstrom-de10-nano-image-glibc-ipk-v2016.12-de10-nano.rootfs.tar.xz extlinux.conf u-boot-with-spl.sfp de10_nano_hdmi_config.bin extlinux.conf-de10-nano u-boot-with-spl.sfp-de10-nano de10_nano_hdmi_config.srec extlinux.conf-de10-nano-r0 u-boot-with-spl.sfp-de10-nano-de10-nano de10-nano-image-Angstrom-v2016.12.socfpga-sdimg LICENSE.de10-nano.rbf u-boot-with-spl.sfp-de10-nano-v2017.03+gitAUTOINC+d03450606b-r0-de10-nano-v2017.03+gitAUTOINC+d03450606b-r0 de10-nano-image-de10-nano.cpio Log.txt zImage de10-nano-image-de10-nano.ext3 modules--4.1.33-ltsi+git0+b84195c056-r0.1-de10-nano-20170330172917.tgz zImage--4.1.33-ltsi+git0+b84195c056-r0.1-de10-nano-20170330172917.bin de10-nano-image-de10-nano.manifest modules-de10-nano.tgz zImage--4.1.33-ltsi+git0+b84195c056-r0.1-socfpga_cyclone5_de10_nano-20170330172917.dtb de10-nano-image-de10-nano.socfpga-sdimg README_-_DO_NOT_DELETE_FILES_IN_THIS_DIRECTORY.txt zImage-de10-nano.bin de10-nano-image-de10-nano.tar.gz STARTUP.BMP zImage-socfpga_cyclone5_de10_nano.dtb de10-nano-image-de10-nano.tar.xz STARTUP.BMP.LICENSE ``` The SD card image name in the above list is "Angstrom-de10-nano-image-glibc-ipk-v2016.12-de10-nano.rootfs.socfpga-sdimg". **Note**: prebuilt images can be found [here](https://software.intel.com/en-us/iot/hardware/fpga/de10-nano). ### Write the Image to a MicroSD Card These instructions only cover Linux\*, for alternate instructions please go [here](https://software.intel.com/en-us/write-image-to-micro-sd-card). **Caution**: These instructions use the dd command which should be used with EXTREME CAUTION. It is very easy to accidentally overwrite the wrong device which can lead to data loss as well as hours spent rebuilding your machine. The first step is to insert the SD Card using either a dedicated SD Card interface or a USB adapter into your machine. Discover which device this shows up. Usually the device shows up as /dev/sdX or /dev/mmcblkX where X is the device number. As an example, our dedicated SD Card interface shows up as /dev/mmcblk0. **Note**: for safety reasons these instructions will use /dev/mmcblkX as this should never be a real device. It will take a few minutes to write the image (~2GB). ``` cd deploy/glibc/images/de10-nano/ sudo dd if=Angstrom-de10-nano-image-glibc-ipk-v2016.12-de10-nano.rootfs.socfpga-sdimg of=/dev/mmxblkX bs=1M && sync && sync ``` After this completes, insert the microSD card into the DE10-Nano board and then power it on. ## Additional Resources * [Discover the Terasic DE10-Nano Kit](https://signin.intel.com/logout?target=https://software.intel.com/en-us/iot/hardware/fpga/de10-nano) * [Terasic DE10-Nano Get Started Guide](https://software.intel.com/en-us/terasic-de10-nano-get-started-guide) * [Project: My First FPGA](https://software.intel.com/en-us/articles/my-first-fpga) * [Learn more about Intel® FPGAs](https://software.intel.com/en-us/iot/hardware/fpga/) * [DE10-Nano FPGA Hardware Project](https://github.com/01org/de10-nano-hardware)