/* * fractal-gen - Generate iteration-based fractals in PNM format * Copyright (c) 2016 David Phillips * All rights reserved * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS "AS IS" AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #include "fractal-gen.h" #include "generator.h" #include #include #include #include #include #include #include static struct section_generator generators[] = { { "mandelbrot-gen" , &generate_mandelbrot_section }, { "burning-ship-gen" , &generate_burning_ship_section }, { "burning-ship-lattice-gen" , &generate_burning_ship_lattice_section } }; int main(int argc, char **argv) { unsigned long x = 0; unsigned long y = 0; unsigned long i = 0; double ram_nice = 0.f; /* Forecast RAM usage, divided down to < 1024 */ char* ram_unit = NULL; /* Unit for ram_nice */ char* bname = NULL; data_section* sections = NULL; generator_func generator = NULL; /* who are we? */ argv0 = argv[0]; /* Select correct generator for the fractal type */ bname = basename(argv[0]); generator = select_generator(bname); if (generator == NULL) { fprintf(stderr, "Don't call this directly, call a symlink to me\n"); return EXIT_FAILURE; } if (!args_parse_okay(argc, argv)) { show_help(); return EXIT_FAILURE; } /* Allocate memory for sections */ if ((sections = malloc(sizeof(data_section)*cores)) == NULL) { perror("malloc"); return EXIT_FAILURE; } ram_nice = (size*size)/clust_total; if (ram_nice < 1024) ram_unit = "B"; else if (ram_nice < 1024*1024) ram_nice /= 1024, ram_unit = "KiB"; else if (ram_nice < 1024*1024*1024) ram_nice /= (1024*1024), ram_unit = "MiB"; else ram_nice /= (1024*1024*1024), ram_unit = "GiB"; fprintf(stderr, "Forecast resource use:\n" " Threads: %d\n" " RAM : ~%.4f %s\n", cores, ram_nice, ram_unit); /* Spawn all the threads! Something something interlacing */ for (i = 0; i < cores; i++) { /* A bit complex, icky, will document later */ if (i < (size%cores)) x = (size/cores)+1; else x = (size/cores); x *= size; x = ceilf((double)x/clust_total); if ((sections[i].data = malloc(x)) == NULL) { fprintf(stderr, "\nmalloc of %lu bytes failed\n", x); perror("malloc"); /* Free already allocated chunks of memory */ i--; while(i-- + 1) free(sections[i].data); free(sections); return EXIT_FAILURE; } sections[i].core = i; sections[i].datasize = x; fprintf(stderr, " -> Thread %lu\r", i); pthread_create(§ions[i].thread, NULL, generator, &(sections[i])); } while((x = sections[0].idx) < sections[0].datasize) { fprintf(stderr, "Thread 0: %.4f%%\r", 100.f*(double)x/sections[0].datasize ); sleep(1); } /* Wait for each thread to complete */ for (i = 0; i < cores; i++) pthread_join(sections[i].thread, NULL); /* Output PGM Header */ printf("P5\n%d\n%d\n255\n",size/clust_total,size); /* Vomit the data segments back onto the screen, deinterlacing * TO DO: look at fwrite performance benefits over putchar */ for (y = 0; y < size; y++) for (x = 0; x < size/clust_total; x++) putchar(sections[y%cores].data[(y/cores)*(size/clust_total) + x]); fprintf(stderr, "\nDone\n"); /* Free the memory we allocated for point data */ for (i = 0; i < cores; i++) free(sections[i].data); free(sections); return 0; } bool args_parse_okay(int argc, char **argv) { char opt = '\0'; /* first things first: preload default or initial values */ size = 0; iterat = 0; power = 2; cores = sysconf(_SC_NPROCESSORS_ONLN); thread_mult = 1; clust_id = 0; clust_total = 1; while ( (opt = getopt(argc, argv, "s:i:e:c:t:N:T")) != -1 ) { switch (opt) { case 's': size = atoi(optarg); break; case 'i': iterat = atoi(optarg); break; case 'e': power = atoi(optarg); break; case 'c': cores = atoi(optarg); break; case 't': thread_mult = atoi(optarg); break; case 'N': clust_id = atoi(optarg); break; case 'T': clust_total = atoi(optarg); break; /* redundant case for '?', but explicitness is best */ case '?': default: return false; break; } } /* Extend number of threads to multiplier value */ cores *= thread_mult; /* Interlacing is column-based, can't have more workers than columns */ if (cores > size) { cores = size; fprintf(stderr, "WARN: Capping number of threads to image size (%d)\n", cores); } if (size % clust_total != 0) { fprintf(stderr, "ERROR: image size must be an exact multiple of clust_total\n"); return false; } if (size <= 0) { fprintf(stderr, "size should be positive\n"); return false; } if (iterat <= 0) { fprintf(stderr, "iteration count should be positive\n"); return false; } if (cores <= 0) { fprintf(stderr, "core counts should be positive\n"); return false; } return true; } generator_func select_generator(const char* name) { unsigned long i = 0; for (i = 0; i < sizeof(generators)/sizeof(struct section_generator); i++) if (strcmp(name, generators[i].executable_name) == 0) return generators[i].generator; return NULL; } void show_help() { fprintf(stderr, "%s -s size -i iterat [-e exponent]\n" " [-c cores] [-t thread_multiplier]\n" " [-N cluster-id -T cluster-total]\n", argv0); }